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Ju n e 2 0 1 2  

6 6 6 9  Fu r t h er  Pu r e Mat h s FP3   

Mar k  Sch em e  
 

Quest ion 

Num ber 
Schem e Marks 

1.   (a) 

 Uses formula to obtain 
5

4
e =  

 

M1A1 

 
 Uses  ae  formula M1  (3) 

     (b) 
Uses other formula  

a

e
 

Obtains both Foci are ( 5,0)±   and Directrices are x = 16
5

±  (needs both 

method marks) 

M1  

 

 

A1 cso (2) 

(5 marks) 

 

 

 

 

 

Notes 

a1M1:  Uses 2 2 2( 1)b a e= −  to get 1e >  

a1A1:  cao 

a2M1: Uses ae 

b1M1:  Uses 
a

e
 

b1A1:  cso for both foci and both directrices. Must have both of the 2 previous M marks may 

be implicit. 

 



   

  

 

Quest ion 

Num ber Schem e Marks 

 

2. 
d

sinh 3
d

y
x

x
=    

 

B1 

 so s = 21 sinh 3 dx x+∫  M1 

 s∴ = cosh 3 dx x∫  A1 

    = 
ln

1
3 0
sinh 3

a
x⎡ ⎤⎣ ⎦  M1 

   = 3ln -3ln1 1
3 6
sinh 3ln [e e ]a a

a = −   

DM1   

 
  =  31

6 3

1
( )a

a
−                                (so k = 1/6) 

 

A1          

 (6 marks) 

 

 

 

Notes 

 

1B1: cao 

1M1:  Use of arc length formula, need both and 

2
dy

dx

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

1A1:  cosh 3 dx x∫  cao   

2M1:  Attempt to integrate, getting a hyperbolic function o.e. 

3M1:  depends on previous M mark. Correct use of  lna and 0 as limits. Must see some 

exponentials. 

2A1:  cao 

 

 

 



   

  

 

 

Quest ion 

Num ber Schem e Marks 

 

3. (a) 

 

               

3 6 2AC = + +i j k
uuur

,                 3 4 3BC = − + +i j k
uuur

 

10 15 30AC BC× = − +i j k
uuuv uuuv

 

 

 

B1,   B1 

 

M1 A1  

(4) 
    

   (b) 

 

               

   Area of triangle ABC = 1
2

10 15 30− +i j k = 1
2

1225 17.5=  

       

 

 

M1 A1  

(2)

   

   (c) 

 

              

  Equation of plane is 10 15 30 20x y z− + = −  or 2 3 6 4x y z− + = −  

So  r. (2i – 3j + 6k) = -4 or correct multiple 

 

M1  

A1          (2) 

( 8 marks)

 

 

Notes 

a1B1:  3 6 2AC = + +i j k
uuur

 cao, any form 

a2B1: 3 4 3BC = − + +i j k
uuur

 cao, any form  

a1M1: Attempt to find cross product, modulus of one term correct. 

a1A1: cao, any form. 

b1M1:  modulus of their answer to (a) – condone missing ½ here. To finding area of triangle 

by correct method. 

b1A1: cao. 

c1M1: [Using their answer to (a) to] find equation of plane. Look for a.n or  b.n or  c.n for p. 

c1A1: cao 



   

  

 

 

Quest ion 

Num ber 
Schem e Marks 

4(a) 44 11 1
2 20 0

( cos 2 ) cos 2 dn n

nI x x nx x x
ππ

−⎡ ⎤= − − −⎣ ⎦ ∫  
M1 A1 

 so

44 41 21 1 1
2 4 40 0 0

( cos 2 ) sin 2 ( 1) sin 2 dn n n

n
I x x nx x n n x x x

ππ π
− −⎡ ⎤ ⎡ ⎤= − + − −⎣ ⎦ ⎣ ⎦ ∫  

 

M1 A1 

 
i.e.   

1

2

1 1
( 1)

4 4 4

n

n nI n n n I
π −

−
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 
 * 

 

A1cso 

  (5) 

(b)  [ ]4 41
0 2 00

sin 2 d cos 2I x x x
π π

= = −∫ = 1
2

 
M1 A1 

  

2 0

1 1
2 2

4 4 4
I I

π⎛ ⎞= × × − × ×⎜ ⎟
⎝ ⎠

 
, so  2

1

8 4
I

π
= −

 
 

M1 A1 

(4)

(c) 3

4 2

1
4 3

4 4
I I

π⎛ ⎞= − × ×⎜ ⎟
⎝ ⎠

 
= 

3 1
3

64 8 4

π π⎛ ⎞− −⎜ ⎟
⎝ ⎠

= 31
64

( 24 48)π π− + * 
 

M1 A1cso 

(2)

 

 

Notes 

a1M1: Use of integration by parts, integrating sin 2x , differentiating n
x . 

a1A1: cao 

a2M1:  Second application of integration by parts, integrating cos 2x , differentiating 1n
x

− .  

a2A1:  cao 

a3A1:  cso Including correct use of 
4

π
and 0 as limits. 

b1M1: Integrating to find 0I  or setting up parts to find 2I . 

b1A1: cao ( Accept  0I  = ½ here for both marks) 

b2M1: Finding 2I in terms of π . If ‘n’’s left in M0 

b2A1: cao 

c1M1: Finding 4I  in terms of 2I  then in terms of π . If ‘n’’s left in M0 

c1A1: cso 

 

 

 

 

 

 

 

 



   

  

 

 

Quest ion 

Num ber 
Schem e Marks 

 

5. (a) 

 

2

2
ar sinh 2 ,    

1 4
x x

x
+

+
 

 

M1A1, A1 

 

(3)

(b) 
∴

2

0
arsinh2 dx x∫  = [ ]

2
2

0 2
0

2
ar sinh 2 d

1 4

x
x x x

x
−

+

⌠
⎮
⌡

 
 

1M1 1A1ft 

 
                            =  [ ] 1

2

2
2 2

0
0

1
ar sinh 2 (1 4 )

2
x x x

⎡ ⎤− +⎢ ⎥⎣ ⎦
 

 

2M1  2A1 

                             =  3 1
2 2

2arsinh2 2 [ ]− −   

3DM1 

                                = 2 ln(3 2 2) 1+ −  

 

 

4M1  3A1 

(7)

(10 marks)
  

 

 

 Notes 

a1M1: Differentiating getting an arsinh term and a term of the form  
21

px

qx±
 

a1A1: cao  ar sinh 2x  

a2A1:  cao + 
2

2
   

1 4

x

x+
 

b1M1: rearranging their answer to (a). OR setting up parts 

b1A1: ft from their (a) OR setting up parts correctly 

b2M1: Integrating getting an arsinh or arcosh term and a ( )2
1
21 ax± term o.e.. 

b2A1:  cao   

b3DM1: depends on previous M, correct use of 2 and 0 as limits. 

b4M1: converting to log form. 

b3A1: cao depends on all previous M marks. 

 

 

 



   

  

 

Quest ion 

Num ber 
Schem e Marks 

 

6(a) 

 

2 2

2 2 d
0

d

x y y

a b x
+ =     and so  

2

2

d cos

d sin

y xb b

x ya a

θ
θ

= − = −  

 

 

M1 A1 

 
∴ siny b θ− =  

cos
( cos )

sin

b
x a

a

θ θ
θ

− −    

      Uses 2 2cos sin 1θ θ+ =  to give 
cos sin

1
x y

a b

θ θ
+ =                         

 
M1 

 

A1cso 

(4)

(b) 
Gradient of circle is 

cos

sin

θ
θ

−  and equation of tangent is 

siny a θ− =
cos

sin

θ
θ

− ( cos )x a θ−  or sets a = b in previous answer 

M1 

 

 

   So sin cosy x aθ θ+ =  A1 

(2)

 

(c) 

 

Eliminate x or y to give sin ( 1) 0a
b

y θ − = or cos ( 1)b
a

x b aθ − = −   

 

M1 

 
1l and 2l  meet at  ( 

cos

a

θ
, 0) 

A1, B1 

(3)

(d) The locus of R is part of the line y = 0, such that  and -x a x a≥ ≤  

Or clearly labelled sketch. 

Accept “real axis” 

B1, B1 

(2) 

(11 marks)

 

Notes 

a1M1: Finding gradient in terms of θ . Must use calculus. 

a1A1: cao 

a2M1: Finding equation of tangent 

a2A1:  cso (answer given). Need to get 2 2cos sinθ θ+  on the same side. 

b1M1: Finding gradient and equation of tangent, or setting a = b. 

b1A1: cao need not be simplified. 

c1M1: As scheme 

c1A1: 
cos

a
x

θ
=  , need not be simplified. 

c1B1: y = 0, need not be simplified. 

d1B1: Identifying locus as y = 0 or real/’x’ axis. 

d2B1: Depends on previous B mark, identifies correct parts of y = 0. Condone use of strict 

inequalities. 

 

 

 

 

 

 



   

  

 

Quest ion 

Num ber Schem e Marks 

7(a) f(x) =  5cosh x – 4sinh x = 1 1
2 2

5 ( ) 4 ( )x x x x
e e e e

− −× + − × −  M1 

         = 1
2
( 9 )x x
e e

−+             A1cso 

(2)
 (b)            

1
2
( 9 )x x
e e

−+  = 5  2 10 9 0x x
e e⇒ − + =  

 

M1 A1 

 So 9  or  1x
e =   and x = ln9 or 0  

M1 A1 

(4)
(c) 

Integral may be written 
2

2
d

9

x

x

e
x

e +
⌠
⎮
⌡

 
 

B1 

 
 

This is 
2

arctan
3 3

x
e⎛ ⎞

⎜ ⎟
⎝ ⎠

 
 

M1 A1 

 
Uses limits to give 2 2 1

3 3 3
arctan1 arctan( )⎡ ⎤−⎣ ⎦ = 2 2

3 34 6
π π⎡ ⎤× − ×⎣ ⎦  

18
π= * 

 

DM1 A1cso 

(5)

(11 marks)

 

Notes 

 

a1M1: Replacing both coshx and sinhx by terms in x
e and x

e
−  condone sign errors here. 

a1A1: cso (answer given) 

b1M1: Getting a three term quadratic in x
e  

b1A1:  cao 

b2M1: solving to x =  

b2A1: cao need ln9 (o.e) and 0 (not ln1) 

c1B1: cao getting into  suitable form, may substitute first. 

c1M1: Integrating to give term in arctan 

c1A1:  cao 

c2M1: Depends on previous M mark. Correct use of ln3 and ½ ln3 as limits. 

c2A1: cso must see them subtracting two terms in π .  

 

 

 

 

 



   

  

 

Quest ion 

Num ber Schem e Marks 

 

8. (a) 
       

2 1    0

1  2  0

1 0   4

λ
λ

λ

−
−

− −
  = 0 (2 )(2 )(4 ) (4 ) 0λ λ λ λ∴ − − − − − =  

 

M1 

 

 

  

(4 ) 0λ− = verifies 4λ = is an eigenvalue        (can be seen anywhere) 

 

M1 

 { }2(4 ) 4 4 1 0λ λ λ∴ − − + − =  { }2(4 ) 4 3 0λ λ λ∴ − − + =  A1 

 

 (4 )( 1)( 3) 0λ λ λ∴ − − − =  and 3 and 1 are the other two eigenvalues M1 A1 

(5) 

(b) 

    
Set

 2 1 0

 1 2 0 4

1  0 4

x x

y y

z z−

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

  or   

2 1 0 0

1 2 0 0

1  0   0 0

x

y

z

−⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟− =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠

  

 

 

M1 

 

 Solve 2 0 and 2 0  and  0x y x y x− + = − = − =  to obtain x = 0, y = 0, 

 z = k 

M1  
 

 Obtain eigenvector as k (or multiple) A1          (3) 

(c) 

1l  has equation which may be written

  3

  2

2 2

λ
λ
λ

+⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟− +⎝ ⎠

 

 

B1 

 

So 2l  is given by r = 

2    1     0

1     2    0

-1   0    4

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  3

  2

2 2

λ
λ
λ

+⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟− +⎝ ⎠

 

 

M1 

 

    i.e. r = 

    8

    7

11 7

λ
λ
λ

+⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟− +⎝ ⎠

 

 

 

M1 A1 

 So − × =(r c) d 0 where c = 8i + 7j - 11k and d =i - j + 7k A1ft       (5) 

(13 marks)

Notes 

a1M1: Condone missing = 0. (They might expand the determinant using any row or column)  

a2M1: Shows λ  = 4 is an eigenvalue. Some working needed need to see  = 0 at some stage. 

a1A1: Three term quadratic factor cao, may be implicit (this A depends on 1
st
 M only) 

a2M1: Attempt at factorisation (usual rules), solving toλ = . 

a2A1: cao. If they state λ = 1 and 3 please give the marks. 

b1M1: Using Ax = 4x o.e. 

b2M1: Getting a pair of correct equations. 

b1A1: cao  

c1B1: Using a and b. 

c1M1: Using r = M x their matrix in a and b. 

c2M1:  Getting an expression for l2 with at least one component correct.  

c1A1:  cao all three components correct 

c2A1ft: ft their vector, must have r = or (r-c)x d = 0 need both equation and r.   
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